Metallkomplexe mit biologisch wichtigen Liganden, LIII¹⁾

A 767

Chirale Halbsandwich-Komplexe von Rhodium(III), Iridium(III), Iridium(I) und Ruthenium(II) mit α-Aminosäure-Anionen

Roland Krämer, Kurt Polborn²⁾, Herbert Wanjek, Ingo Zahn und Wolfgang Beck*

Institut für Anorganische Chemie der Universität München, Meiserstraße 1, D-8000 München 2

Eingegangen am 2. Oktober 1989

Key Words: Rhodium(III) complexes / Iridium(I/III) complexes / Ruthenium(II) complexes / α -Amino acid anion chelates / η^{5} -Pentamethylcyclopentadienyl / η^{6} -Benzene / η^{4} -1,5-Cyclooctadiene

Metal Complexes of Biologically Important Ligands, LIII¹⁾. – Chiral Half-Sandwich Complexes of Rhodium(III), Iridium(I), and Ruthenium(II) with α -Amino Acid Anions

The chloro-bridged metal compounds Cp*(Cl)M(μ -Cl)₂M(Cl)-Cp* (M = Rh, Ir; Cp* = η^{5} -C₅Me₅), (η^{6} -C₆H₆)(Cl)Ru(μ -Cl)₂-Ru(Cl)(η^{6} -C₆H₆), and (COD)Ir(μ -Cl)₂Ir(COD) react with α -amino acidates to give monomeric chelate complexes Cp*(Cl)M(L-L') (1) (M = Rh, Ir; L-L' = GlyO, L-ValO, L-PheO, PhenylglyO, L-TrpO, L-ProO, L-HisO, L-AspO, L-azeti-dine-2-carboxylate), Cp*M(L-AspO,O') (2) (M = Rh, Ir), [Cp*(Cl)Ir(L-HisOH)]⁺Cl⁻ (3), (η^{6} -C₆H₆)(Cl)Ru(L-L') (4) (L-L' = L-ProO, L-PheO, L-p-NO₂PheO, L-DopaO, D-PhenylglyO), [(η^{6} -C₆H₆)Ru(L-HisO)][•]Cl⁻ (5), and (COD)Ir(L-L') (7, 8) (L-L' = L-AlaO, L-PheO, L-ValO, L-PhenylglyO, L-1-aminocy-

In den letzten Jahren sind verschiedene metallorganische Verbindungen von α-Aminosäuren bekannt geworden³⁾. Dabei erscheinen insbesondere α-Aminosäure-Komplexe mit einem asymmetrisch substituierten Metall-Atom von Interesse. Die grundlegenden Arbeiten über metallorganische Komplexe mit dem Metallatom als stereogenem Zentrum stammen von Brunner und Mitarbeitern⁴⁾. Als Ausgangsverbindungen zur Darstellung von Chelat-Komplexen mit α-Aminosäure-Anionen haben sich die halogenoverbrückten Komplexe $(ON)_2M(\mu-Br)_2M(NO)_2$ $(M = Fe, Co)^{5}$, $(allyl)Pd(\mu-Cl)_2Pd(allyl)^{6}$, $(C_6H_6)(C_3H_5)Mo(\mu-Cl)_2Mo(C_6H_6)$ - $(C_3H_5)^{7}$, $L_2M(\mu-Cl)_2ML_2$ (M = Rh, Ir; L = 1/2 COD, $CO)^{8,9}$, $(COD)(Cl)Ru(\mu-Cl)_2Ru(Cl)(COD)^{8)}$, $(C_6H_6)(Cl)Ru(\mu-Cl)_2Ru(Cl)(COD)^{8}$ $Cl_{2}Ru(Cl)(C_{6}H_{6})^{10}$, $(R_{3}P)(Cl)Pt(\mu-Cl)_{2}Pt(Cl)(PR_{3})^{11}$ und $[Me_2NCH_2C_6H_4Pd(\mu-Cl)]_2^{(11)}$ bewährt. Die Komplexe (COD)Rh(a-Aminosäure-Anion) sind Katalysatoren für die Hydrierung von Olefinen^{9b)}, für die Hydrosilylierung von Ketonen^{9c)} und für den enantioselektiven H-Transfer von 2-Propanol auf Arylketone^{9d)}, wobei mit einem Methioninsulfoxid-Liganden ein Enantiomerenüberschuß bis zu 75% erreicht wurde^{9c)}.

In Fortführung unserer Arbeiten¹²⁾ über metallorganische Verbindungen von α -Aminosäuren berichten wir über Umsetzungen der chloroverbrückten Komplexe Cp*(Cl)M(μ -Cl)₂M(Cl)Cp*¹³⁾ (Cp* = η^{5} -C₅Me₅, M = Rh, Ir), (η^{6} -C₆H₆)-(Cl)Ru(μ -Cl)₂Ru(Cl)(μ^{6} -C₆H₆)¹⁴⁾ und (COD)Ir(μ -Cl)₂Ir(COD)¹⁵⁾ mit α -Aminosäuren. Es ist bekannt, daß diese Komplexe

clopropanecarboxylate), respectively. The complexes 1-5 have a stereogenic metal atom. Similarly, the cleavage of chloro bridges in (COD)Ir(μ -Cl)₂Ir(COD) by α -amino acid esters affords the complexes (COD)Ir(Cl)L (6) (L = GlyOEt, L-AlaOMe, L-ValOMe). The diastereoisomers of 1, 3, and 4 can be detected by NMR spectroscopy. With prolinate a diastereoiselectivity up to 92:8 is achieved. The structures of Cp⁺(Cl)Ir(L-ProO) (1j), Cp⁺(Cl)Rh(L-azetidine-2-carboxylate) (1m), [Cp⁺(Cl)Ir(L-HisOH)]Cl (3), and (n⁶-C₆H₆)(Cl)Ru(L-ProO) (4a) have been determined by X-ray crystallography.

mit N- und O-Donoren unter Spaltung der Chlorobrücken reagieren^{13b,16)}.

Ergebnisse und Diskussion

Die Umsetzung von $Cp^{*}(Cl)M(\mu-Cl)_{2}M(Cl)Cp^{*13}$ (M = Rh, Ir) mit Anionen verschiedener α -Aminosäuren (Kalium-Salze) liefern die Komplexe 1a - m in guten Ausbeuten.

Im IR-Spektrum von 1a-m (Tab. 2) sind die $v_{as}CO_2$ -Absorptionen bei 1610-1630 cm⁻¹ charakteristisch für Chelat-gebundene & Aminosäure-Anionen. Die Metall-Chlor-Valenzschwingung von 1 tritt bei 250-300 cm⁻¹ auf. Das intensive Methyl-¹H-NMR-Signal der Cp*-Liganden ist bei den Komplexen mit aromatischen Aminosäure-Resten 1e-i eine zuverlässige Sonde für den Nachweis der gebildeten Diastereoisomeren (Tab. 1). Wie von Brunner et al, festgestellt wurde, verursacht der Anisotropie-Effekt von aromatischen Ringen auf Cp-Protonen in chiralen Cp- $(CO)_2Mo(L-L')$ -Komplexen eine deutliche Trennung der Cp-¹H-NMR-Signale von zwei Diastereoisomeren^{4c,17}). Möglicherweise führt die Wechselwirkung zwischen dem Cp*-Ring und aromatischen Resten der Liganden (vgl. β-Phenyl-Effekt^{4c,17}) bei 1e-i zu einer Anreicherung des S_MS_C-Diastereoisomeren (Bezeichnung nach Lit.^{4b,c)}) im thermodynamischen Gleichgewicht (Tab. 1). Die Cp*-Signale der Diastereomeren von 1c,d und 1j,k liegen für eine getrennte Integration zu dicht zusammen, weil die aliphatischen Aminosäurereste nur geringe Unterschiede in der

S_M S_C

R_MS_C

SMSCSN

RMSCSN

	М	n	Aminosäure
1 j	Ir	2	L-Prolin
k	Rh	2	L-Prolin
1	Ir	1	Azetidin-2- carbonsäure
m	Rh	1	Azetidin-2- carbonsäure

chemischen Verschiebung verursachen. Hier wurden andere ¹H-NMR-Signale bzw. die relativen Intensitäten der ¹³C-NMR-Signale zur Bestimmung des Diastereoisomeren-Verhältnisses herangezogen.

Für 1e wurde die Temperaturabhängigkeit des Cp*-¹H-NMR-Signals in CD₃OD untersucht. Im Temperaturbereich -65 bis +20°C treten zwei deutliche getrennte Methyl-Signale auf, die bei 52°C zu einem Signal zusammenfallen. Vermutlich verläuft die Epimerisierung am Metall-Atom nach einem dissoziativen Mechanismus^{4b}) über einen katio-

Tab. 1. Cp*- bzw. C₆H₆-Signale im ¹H-NMR-Spektrum von 1a-m und 4a-e

Verb.	Cp^{*} - bzw. C_6H_6 -	Diastereoisomeren-
	Signale (in ppm)	Verhaltnis
1 a	1.69	
Ъ	1.71	
с	1.70/1.71	49/51*)
d	1.72	48/52*)
е	1.52(S _M S _C)/1.66(R _M /S _C)	69/31
f	1.53(S _M /S _C)/1.67(R _M /S _C)	66/34
g	1.67(S _M /S _C)/1.73(R _M /S _C)	57/43
h	1.29(S _M /S _C)/1.62(R _M /S _C)	79/21
i	1.28(S _M /S _C)/1.62(R _M /S _C)	79/21
j	1.68/1.71	92/8*)
k	1.71	92/8*)
i	1.62/1.59	90/10
m	1.73/1.69	82/18
4 a	5.66/5.68	90/10 *)
Ъ	5.41(S _M S _C)/5.62(R _M S _C)	69/31
с	5.59(S _M S _C)/5.66(R _M S _C)	61/39
đ	5.43(S _M S _C)/5.66(R _M S _C)	70/30
е	5.72(S _M S _C)/5.78(R _M S _C)	60/40

*) Das Diastereoisomeren-Verhältnis wurde an anderen ¹H-NMR-Signalen bzw. ¹³C-NMR-spektroskopisch bestimmt, siehe Exp. Teil.

nischen Solvens-Komplex $[Cp*Ir(PheO)(CD_3OD)]^+Cl^-$. Verbindung 1c zeigt in Methanol/Aceton eine geringe Leitfähigkeit¹⁸ (siehe Exp. Teil). Die höchste Diastereoselektivität (ca. 9:1) wird für die Prolinato- und Azetidincarboxylato-Komplexe 1j,k und 1l,m festgestellt (Tab. 1). Den starken sterisch dirigierenden Einfluß von Prolinat haben wir früher auch für den Komplex Cp(OC)₂Mo(ProO) beobachtet^{12b}. Von (S)-Azetidin-2-carbonsäure sind Bis(chelat)-Komplexe von verschiedenen Metall-Ionen bekannt^{19a}. Mit Histidinat und Cp^{*}₂Ir₂Cl₄ entsteht 1n; die IR-Absorptionen (Tab. 2) sprechen für die angegebene Struktur im festen Zustand. Diese Koordinations-Art von Histidinat wurde bereits beschrieben^{19b}. Die Leitfähigkeit von 1n in Aceton weist auf eine weitgehende elektrolytische Dissoziation in Lösung hin (siehe Exp. Teil).

Das Dianion der Asparaginsäure tritt in 2a,b als dreizähniger Ligand auf. Ein Chelat-Ring in 2a läßt sich mit

	$v(NH_2)$	$v(CO_2 \text{ koord.})$	v(M-Cl)
1a	3238 m, 3138 m, 3100 m	1629 s	280 w
b	3225 m, 3245 sh, 3140 m, 3115 w	1625 s	278 w ^{a)}
c	3225 m, br, 3110 m, br	1630 s	260 w
d	3240 m, br, 3200 m, br, 3080 m, br	1618 s	265 vw, 257 w ^{a)}
е	3236 m, 3100 m, br	1635 s, br	279 w, 262 vw
f	3210 m, br, 3100 m, br	1635 s	274 w, 261 vw ^{a)}
g	3218 m, 3118 m	1635 s	274 w
ĥ	3280 m, br, 3240 m, br,	1630 s	265 vw
	3140 m, br, 3110 m, br		
i ^{e)}	3260 m, br, 3160 m, br	1610 s	265 w
j	3184 m, br	1632 s	275 w
k	3180 m, br	1615 s	275 w
1	3120 m	1620 s	275 m
m	3195 m	1610 s	270 m
n ^{a)}	3485 m, 3430 m ^{b,d)}	1650 s, 1620 sh	263 w
o	3240 m, br, 3120 m, br, 3080 m, br	1627 s	272 w
2 a	3210 m, br, 3120 m, br	1635 s, 1605 s	-
b ^{a)}	3213 m, br, 3110 m, br	1650 s, 1625 s	—
3 ^{a,g)}	3180 m, 3129 m	1712 s, 1732 shd	273 w
4 a ^{a)}	3160 m	1612 s, 1633 shd	290 w, 273 w,
			257 vw
b	2441 m, 2378 m, (ND ₂) ^{c)}	1622 s	254 vw
c	3260 m, br, 3220 m, br, 3138 m,	1624 s, 1602 shd	273 w
	3100 w, br		
d	3230 w, 3130 w	1627 s	256 vw
е	3291 w, 3271 w, 3228 m, 3120 w	1636 s	297 vw, 256 vw
5 ^{a)}	$3390 \text{ w}, 3336 \text{ w}^{\text{b}}$	1644 s	253 w
	3226 w		
6a ^{h)}	3260 s, 3210 m, 3110 w	_	290 s
b ⁱ⁾	3270 w, 3228 s, 3190 sh, 3123 m	-	287 m
c ⁱ⁾	3267 sh, 3237 s, 3188 s, 3130 s	—	285 w
7a	3238 s, 3180 shd, 3120 s	1636 s	
b	3280 sh, 3200 s, 3120 s	1635 s	-
c	3258 s, 3210 s, 3123 s	1637 s	_
ď	3220 sh, 3200 s, 3118 s	1637 s	_
e	3220 sh, 3185 s, 3100 s	1630 s	_
8	3238 m, 3180 s, 3120 s	1640 s, 1622 sh	_

Tab. 2. Ausgewählte IR-Banden (in KBr) von 1-8

^{a)} Nujol-Spektrum. – ^{b)} NH₂ nicht koordiniert. – ^{c)} Ansatz in D₂O. – ^{d)} Scharfe Banden. – ^{e)} 3340 m (Imidazolyl-NH). – ^{h)} 1715 s (vCO₂H). – ^{g)} 3309 m (Imidazolyl-NH). – ^{h)} 1748 s [v(CO₂R)]. – ⁱ⁾ 1740 s [v(CO₂R)].

Chem. Ber. 123 (1990) 767-778

HCl öffnen, wobei eine Verbindung der vermutlichen Struktur **10** entsteht. Die Spaltung des α -Aminocarboxylat-Rings unter Bildung von *N*-koordinierten Aminosäuren mit freier Carboxylgruppe ist vor allem mit Platin(II)^{20a)} sowie auch mit Cobalt(III)^{20b)} bekannt. Histidin reagiert in Methanol zu dem kationischen Komplex **3**, der in Lösung als 52:48-Gemisch der beiden Diastereoisomeren vorliegt.

Eine Reihe von Ruthenium-Komplexen 4 mit α -Aminosäure-Anionen konnte auch aus der chloroverbrückten Verbindung (η^6 -C₆H₆)(Cl)Ru(μ -Cl)₂Ru(Cl)(μ^6 -C₆H₆) erhalten werden.

Die entsprechenden Komplexe mit Glycinat und Alaninat wurden bereits von Baird¹⁰⁾ dargestellt und das Diastereoisomerenverhältnis der Alaninato-Verbindung in D₂O/LiCl-Lösung¹³C-NMR-spektroskopisch bestimmt. Wir beobachteten bei der Prolinato-Verbindung **4a** eine ähnlich große Diastereoselektivität wie bei den Komplexen **1**j,k.

Enthält die koordinierte Aminosäure einen aromatischen Rest (**4b**-e), so treten in den ¹H-NMR-Spektren zwischen 5 und 6 ppm zwei deutlich getrennte η^6 -C₆H₆-Resonanzen auf (Tab. 1). Das Signal bei höherem Feld wird dem Diastereoisomeren S_MS_C zugeordnet, das die R_MS_C -Form überwiegt. Möglicherweise ist dafür wiederum ein "Anziehungseffekt"^{4c,17} zwischen aromatischem Aminosäurerest und koordiniertem Benzolring verantwortlich.

Die Dissoziation der Komplexe 4a - e in D₂O-Lösung zu kationischen D₂O-Komplexen läßt sich durch Zugabe von LiCl zurückdrängen¹⁰.

Das Auftreten nur eines C_6H_6 -Signals im ¹H-NMR-Spektrum (wäßrige Lösung) spricht für eine dreizähnige Koordination des L-Histidinato-Liganden in **5**. Für die kristalline Verbindung **5** werden jedoch IR-Banden gefunden, die auf eine (Imin-*N*,*O*)-Koordination mit freier α -NH₂-Gruppe deuten (vgl. Verbindung **1n**). Mit Histidin (ohne Zusatz von Base) entsteht dagegen [(η^6 -C₆H₆)(Cl)Ru(HisOH)]⁺Cl⁻ (Imin-, NH₂-Koordination)^{10b}.

Entsprechend setzt sich der chloroverbrückte COD-Iridium(I)-Komplex mit α -Aminosäureestern bzw. α -Aminosäure-Anionen zu den Verbindungen 6a - c, 7a - e und 8 um.

Die zu 7 analogen Glycinato- und Prolinato-Komplexe wurden früher beschrieben⁸⁾. 1-Aminocyclopropancarboxylat bildet die Verbindung 8. Mit diesem Chelat-Liganden wurden Komplexe von Pt(II), Pd(II) und Ni(II)²¹⁾ sowie von Cu(II)²²⁾ erhalten und deren Strukturen kristallographisch bestimmt.

Strukturen von 1j, 1m, 3 und 4a im Kristall

In 1j und 1m liegen im Kristall beide Diastereoisomeren paarweise vor, während die Kristalle von 3 und 4a nur ein Diastereoisomeres (3: $S_{Ir}S_{C}$; 4a: $S_{Ru}S_{C}S_{N}$) enthalten. Die Verbindung 1j kristallisiert mit 1/2 Moläquivalent Wasser. Die Struktur dieser Komplexe (Abb. 1-3, Tab. 4-11) wird im allgemeinen als "three legged piano stool" bezeichnet²³⁾. Vergleichbare Geometrie besitzen Cp*Rh(PMe₃) $(O_2CMe)_2^{23}$, $[Cp^*Rh(Cl)(Et_2NCH_2CH_2PPh_2)_2]^{+24}$ sowie $[Cp*Ir(Cl)(bpy)]^+$ und $[Cp*Rh(Cl)(phen)]^{+25}$. In letzteren beiden Verbindungen ist der Abstand zwischen dem Rhodium- bzw. Iridium-Atom und der Cp*-Ebene praktisch gleich lang wie in 1m, 1j und 3 (175-179 pm). Der Abstand zwischen dem Ruthenium-Atom und der Benzol-Ebene in 4a entspricht dem in $[(\eta^6-C_6H_6)RuB(pz)_4]^+$ (167 pm)²⁶). Die Ruthenium-Chlor-Bindung in 4a ist gleich lang wie in $(n^{6}$ - C_6H_6 Ru(PMePh₂)Cl₂ (241 pm)²⁷⁾. Die Metall-Chlor-(240-242 pm), Metall-Sauerstoff- (207-211 pm) und Metall-Stickstoff-Abstände (209-213 pm) sind in 1j, 1m und 4a sehr ähnlich. In 3 ist die Bindung vom Ir-Atom zum sp²-N-Atom des Imidazolylrests um 9 pm kürzer als die zur

Abb. 1. Struktur von 1j im Kristall. Die Schwingungsellipsoide entsprechen 20% Aufenthaltswahrscheinlichkeit

Abb. 2. Struktur von 1m im Kristall. Die Schwingungsellipsoide entsprechen 20% Aufenthaltswahrscheinlichkeit

NH₂-Gruppe. Die Bindungswinkel im M-(Cl,O,N)- bzw. M - (Cl, N, N)-Gerüst sind etwas kleiner als 90°. Das chirale N-Atom in den Verbindungen 1 j und 1m ist S-konfiguriert, wie auch bei anderen Prolinato-Chelat-Komplexen gefunden wurde28). Die Bindungsabstände und -winkel im Azetidin-Ring von 1m sind gegenüber denen der freien L-Azetidin-2-carbonsäure²⁹⁾ kaum verändert. Wie in dem Zwitter-Ion $^{+}H_2NCH_2CH_2CHCOO^{-29)}$ ist der Vierring in den beiden Diastereomeren von 1m gefaltet mit einem Winkel zwischen den Ebenen C12 - N1 - C14 (bzw. C31 - N2 - C32) und C12-C13-C14 (bzw. C31-C32-C33) von 171 bzw. 164°. In den Chelat-Fünfringen von 1j, 1m und 4a ist eine Halbsesselkonformation nur schwach ausgeprägt. So beträgt in 4a der Winkel zwischen den Ebenen O1-Ru1-N1 und O1-C5-C1-N1 166°. Die diesem Winkel entsprechenden Winkel in 1j, 1m liegen zwischen 160 und 170°. Der Chelat-Sechsring in 3 zeigt eine "gefaltete" Konformation (vgl. Abb. 3) mit einem Winkel zwischen den Ebenen Ir1 - N1 - C11 - C12 und Ir1 - C12 - C13 - N2 von 128° .

Abb. 3. Struktur von 3 im Kristall. Die Schwingungsellipsoide entsprechen 20% Aufenthaltswahrscheinlichkeit

Abb. 4. Struktur von 4a im Kristall. Die Schwingungsellipsoide entsprechen 20% Aufenthaltswahrscheinlichkeit

Dem Fonds der Chemischen Industrie (Doktoranden-Stipendium an R. K.) gilt unser herzlicher Dank für großzügige Förderung. Der Degussa AG, Wolfgang, danken wir für wertvolle Chemikalien, Frau Dipl.-Chem. B. Wagner und Herrn M. Steimann für wertvolle Hilfe zur Röntgenstrukturanalyse.

Experimenteller Teil

Die Versuche wurden nur dann unter N₂-Schutz und mit absoluten Lösungsmitteln durchgeführt, wenn dies ausdrücklich beschrieben ist. Alle Substanzen wurden im Ölpumpenvakuum getrocknet. – Die ¹H- und ¹³C-NMR-Signale sind in ppm gegen TMS (1-3) oder Solvens (4-8) als internen Standard angegeben.

Allgemeine Darstellungsvorschrift für die Verbindungen 1a - n: Zu 0.4 mmol α -Aminosäure in 3 ml Methanol wird eine stöchiometri-

sche Menge methanolische KOH-Lösung (ca. 1 mol/l, frisch titriert) gegeben und leicht erwärmt. Die Aminosäure löst sich dabei ganz oder größtenteils auf. Man gibt diesen Ansatz zu einer Suspension von 0.2 mmol $[Cp^*MCl_2]_2^{13}$ (M = Rh, Ir) in 2 ml Methanol und läßt mindestens 1 h rühren. Die gelbe (Ir) bzw. orangefarbene (Rh) Lösung wird i.Vak. eingeengt und der Rückstand in etwa 5 ml Dichlormethan gerührt, wobei das ausgefallene KCl suspendiert bleibt. Wenn nötig, wird zur vollständigen Auflösung des Komplexes etwas Methanol zugesetzt. Nach Zugabe von wasserfreiem Natriumsulfat wird noch ca. 1 h gerührt, filtriert und die klare Lösung mit viel Hexan überschichtet. Die Komplexe 1a-n sind gut löslich in Wasser, Methanol und Ethanol, mäßig bis gut löslich in Dichlormethan und Aceton und unlöslich in Hexan. Die Substanzen wurden bei 60-80 °C im Ölpumpenvakuum getrocknet.

Chloro(glycinato)(η^{5} -pentamethylcyclopentadienyl)iridium(III) (1a): Nach Umkristallisieren wird 1a als Monohydrat in Form großer, gelber Kristalle erhalten. – ¹H-NMR (D₃COD): δ = 3.41, 3.38 (br, H^a).

Chloro(glycinato)(η^{5} -pentamethylcyclopentadienyl)rhodium(III) (1b) kristallisiert als hellrotes Monohydrat. – ¹H-NMR (D₃COD): $\delta = 3.23$ (br, H^{α}).

Chloro(η^5 -pentamethylcyclopentadienyl)(L-valinato)iridium(III) (1 c) kristallisiert in feinen hellgelben Nadeln. – ¹H-NMR (CDCl₃ mit 5% D₃COD): δ = 3.32 (m, H^a), 3.16 (s, H^N), 2.35 (m, H^β), 1.05 und 0.89 (d, H⁷, Integral-Verhältnis 51:49). – Molare Leitfähigkeit (Aceton/Methanol 10:1, c = 1 mmol/l, 20°C): 8 cm²/ Ω mol.

Chloro(η^5 -pentamethylcyclopentadienyl)(L-valinato)rhodium-(III) (1d): Feine, orangefarbene Nadeln. – ¹H-NMR (D₃COD): $\delta = 3.11$ (br, H^{α}), 2.32 (br, H^{β}), 1.04 und 0.85 (d, H^{γ}, Integral-Verhältnis 52:48). – ¹³C-NMR (D₃COD): $\delta = 183.62$ und 182.56 (CO₂ koord.), 94.57–94.84 [C₅(CH₃)₅, mehrere Signale, wahrscheinlich Kopplung ¹³C,¹⁰³Rh], 64.10 und 62.76 (C^{α}, relative Intensität 48:52), 8.98 [C₅(CH₃)₅].

Chloro(η^5 -pentamethylcyclopentadienyl)(*t*-phenylalaninato)iridium(III) (1e): Nach Umkristallisieren erhält man große, gelbe Kristalle. – ¹H-NMR (CDCl₃ mit 5% D₃COD): δ = 7.34 (m, Aryl-H), 3.81 und 3.52 (m, H^a, Integral-Verhältnis ca. 70:30), 3.31, 3.08 (m, H^β), 2.89 (s, H^N).

Chloro (η^{5} -pentamethylcyclopentadienyl) (L-phenylalaninato)rhodium(III) (1f): Nach Umkristallisieren werden große, hellrote Kristalle erhalten. – ¹H-NMR (CDCl₃ mit 5% D₃COD): δ = 7.35 (m, Aryl-H), 3.62 (m, H^a), 3.31 (m, H^a und H^β), 3.05 (m, H^β).

Chloro (η^5 -pentamethylcyclopentadienyl) (D-phenylglycinato)iridium(III) (1g): Das zunächst erhaltene Pulver kristallisiert aus Dichlormethan/Hexan als Hemihydrat in Form hellgelber Nadeln. – ¹H-NMR (D₃COD): $\delta = 7.37$ (m, Aryl-H), 4.56 und 4.35 (s, H^α, Integral-Verhältnis 54:46). – ¹³C-NMR (D₃COD): $\delta = 185.84$ (CO₂ koord.), 141.51 und 140.47 (*ipso*-C, relative Intensitäten 43:57), 129.37 – 129.96 (Aryl-C), 85.96 und 85.70 [C₅(CH₃)₅, relative Intensitäten 44:56], 62.44 und 61.01 (C^α, relative Intensitäten 45:55), 9.06 [C₅(CH₃)₅].

Chloro(η^{5} -pentamethylcyclopentadienyl)(L-tryptophanato)iridium(III) (1h) fällt als Hemihydrat an. – ¹H-NMR (D₃COD): δ = 7.05 – 7.73 (Aryl-H), 3.49 (br, H^{α}), 3.1 – 3.4 (br, H^{α} und H^{β}).

Chloro(η^5 -pentamethylcyclopentadienyl)(L-tryptophanato)rhodium(III) (1i) wird als mikrokristallines, orangefarbenes Pulver crhalten (Hemihydrat). – ¹H-NMR (D₃COD): $\delta = 7.0-7.8$ (br, m, Aryl-H), 3.70 (br, m, H^s), 3.1 – 3.5 (br, m, H^b).

Chloro(n-pentamethylcyclopentadienyl)(L-prolinato)iridium(III) (1j) kristallisiert als gelbes Hemihydrat, ist aber nach Trocknung solvatfrei. – ¹H-NMR (CDCl₃): δ = 4.96 (br, m, H^N), 4.02 (m, H^α), 3.67 (m, 1H^δ), 3.23 und 2.90 (m, 1H^δ, Integral-Verhältnis 8:92), 1.7–2.3 (H^β, H^γ). – ¹³C-NMR (CDCl₃): δ = 185.10 und 184.86 (CO₂ koord., relative Intensität 9:91), 83.72 und 84.01 [C₅(CH₃)₅, relative Intensität 11:89], 63.52 und 62.42 (C^α, relative Intensität 6:94), 54.87 und 52.08 (C^δ, relative Intensität 92:8), 28.73 und 27.45 (C^β oder C^γ, relative Intensität 92:8), 26.90 (C^β oder C^γ), 9.07 und 8.84 [C₅(CH₃)₅, relative Intensität 92:8].

Chloro (η^{5} -pentamethylcyclopentadienyl) (L-prolinato) rhodium-(III) (1k): Die erhaltenen hellroten Kristalle sind nach Trocknung solvatfrei. – ¹H-NMR (D₃COD): $\delta = 3.85$ (m, H^x), 3.66 (m, 1 H⁸), 3.24 und 2.85 (m, 1 H⁸, Integral-Verhältnis 8:92), 1.7–2.3 (H^β und H^γ).

(L-Azetidin-2-carboxylato)chloro(η^{5} -pentamethylcyclopentadienyl)iridium(III) (11): Große, gelbe Kristaile aus CH₂Cl₂/Pentan. - ¹H-NMR (CDCl₃/D₃COD): $\delta = 5.8$ (br, m, H^N), 4.3-4.4 (m, H^a), 2.9-2.3 (m, H^B), 3.7-4.1 (m, H^q). - ¹³C-NMR (CDCl₃/ D₃COD): $\delta = 185,10$ (CO₂ koord.), 84.13 und 83.99 [C₅(CH₃)₅, relative Intensität 1:8], 60.36 und 59.20 (C^a, relative Intensität 1:8), 51.02 und 50.83 (C^q, relative Intensität 1:6.3), 29.39 und 25.90 (C^B, relative Intensität 1:4.5), 8.58 und 8.41 [C₅(CH₃)₅, relative Intensität 1:10.9].

(*L*-Azetidin-2-carboxylato)chloro(η^{5} -pentamethylcyclopentadienyl)rhodium(III) (1m): Orangefarbene Kristalle. – ¹H-NMR (CDCl₃/D₃COD): δ = 4.2 (dd, H^a), 2.4–3.0 (m, H^β), 4.2–3.9 (m, H^γ). – ¹³C-NMR (CDCl₃/D₃COD): δ = 183.73 (CO₂ koord.), 93.87–93.62 [*C*₅(CH₃)₅, mehrere Signale, wahrscheinlich Kopplung ¹³C,¹⁰³Rh], 62.43 und 61.35 (C^α, relative Intensität 4.2:1), 48.5 (C^γ), 27.08 und 25.01 (C^β, relative Intensität 4.9:1), 8.94 und 8.81 [C₅(CH₃)₅, relative Intensität 4:1].

Chloro(L-histidinato)(η^{5} -pentamethylcyclopentadienyl)iridium-(III) (1n): Nach Umkristallisieren wird ein gelbes Monohydrat erhalten. – ¹H-NMR (D₃COD): $\delta = 1.77$ und 1.70, 1.66, 1.64 (Cp*-H, Integralverhältnis ca. 80:20), 8.14 (br, N-CH=N), 7.11 (br, N-CH=C), 4.17 (br, m, H^x), 2.4-3.5 (br, m, H^β). – Molare Leitfähigkeit: (Aceton/Methanol 10:1, c = 1 mmol/l, 20°C): 70 cm²/ Ω mol.

 $(L-Aspartato)(\eta^{5}-pentamethylcyclopentadienyl)iridium(III)$ (2a): 0.40 mmol (53 mg) L-Asparaginsäure, 0.20 mmol (159 mg) [Cp*IrCl₂]₂ und 0.80 mmol (134 mg) Silberacetat werden 15 h in 5 ml Methanol gerührt. Nach Entfernen des Solvens i. Vak. wird der Rückstand noch ca. 1 h bei 60°C i. Vak. getrocknet. Man rührt mit 5 ml Dichlormethan und gibt eventuell zur vollständigen Auflösung des Komplexes einige Tropfen Methanol zu. Das ausgefallene Silberchlorid wird abzentrifugiert und die klare Lösung mit viel Hexan überschichtet. Die erhaltenen gelben Nadeln werden nochmals aus CH2Cl2/Methanol/Hexan umkristallisiert. Hydratwasser ist auch durch tagelanges Trocknen bei 80°C nicht vollständig entfernbar. 2a wird als Hemihydrat erhalten. Wenn Aufarbeitung und Überschichten unter wasserfreien Bedingungen erfolgen, kristallisiert 2a nicht, sondern fällt als Harz an. Kristallin löslich in Methanol und Wasser, mäßig löslich in Dichlormethan, schwerlöslich in Hexan. $- {}^{1}$ H-NMR (D₃COD): $\delta = 4.14$ (m, H^{α}), 2.74 (m, H^{β}), 1.68 (s, Cp*-H).

(L-Aspartato) (η^5 -pentamethylcyclopentadienyl)rhodium(III) (2b): Wird mit [Cp*RhCl₂]₂ analog zu 2a dargestellt und als kristallines, hellrotes Monohydrat erhalten. – ¹H-NMR (D₃COD): $\delta = 3.62$ (br, H^a), 2.59 (br, m, H^b), 1.71 (s, Cp*-H).

(L-Aspartato)chloro(η^{5} -pentamethylcyclopentadienyl)iridium-(III) (10): 37 mg (79 µmol) 2a werden im Reagenzglas mit 80 µl 1 M HCl und 0.5 ml destilliertem Wasser versetzt. Zunächst fällt etwas $[Cp*IrCl_2]_2$ aus. Nach Schütteln mit der gleichen Menge Dichlormethan entstehen zwei klare, orangefarbene Phasen. Während mehrtägigem Stehenlassen an Luft verdunstet das Dichlormethan, und es scheiden sich große, gelbe Nadeln ab (Hemihydrat). 10 ist löslich in Wasser, Methanol, Ethanol und mäßig löslich in Dichlormethan. Die Darstellung von 10 durch bloßes Einengen einer Lösung von 2a in HCl gelingt nicht; es bleiben unter anderem $[Cp*IrCl_2]_2$ und die freie Aminosäure zurück.

Chloro(L-histidin)(η^{5} -pentamethylcyclopentadienyl)iridium(III)chlorid (3): 31 mg (0.2 mmol) L-Histidin und 80 mg (0.1 mmol) [Cp*IrCl₂]₂ werden in 3 ml Methanol 3 h gerührt. Die klare, gelbe Lösung wird mit viel Ether überschichtet. Es werden gelbe Kristalle erhalten, die sich gut in Methanol, Ethanol und Wasser, kaum in Dichlormethan und Aceton lösen. – ¹H-NMR (D₃COD): δ = 7.91 und 7.89 (s, N=CH-N), 7.13 (s, br, N-CH=C), 4.11 (m, H^α), 2.4-3.6 (m, H^β), 1.76 und 1.72 (s, Cp*-H, Integral-Verhältnis 42: 58). – Molare Leitfähigkeit (Aceton/Methanol 10:1, c = 1 mmol/l, 20 °C): 95 cm²/Ω mol.

Allgemeine Vorschrift zur Darstellung der Komplexe **4a** – e und **5**: 0.3 mmol Aminosäure werden in Wasser durch Rühren aufgelöst oder suspendiert. Dazu gibt man eine äquivalente Menge an vorher titriertem Kalium-*tert*-butylat, wobei die Aminosäure als Anion in Lösung geht. Zu dieser Lösung gibt man 75 mg (0.15 mmol) [η^6 -(C_6H_6)RuCl₂]₂¹⁴, wobei sich die Mischung nach mehrstündigem Rühren gelb bzw. in einem Fall grün färbt. Das Produkt scheidet sich als Niederschlag ab, der abfiltriert, mit wenig Wasser gewaschen und bei 60°C getrocknet wird. Die erhaltenen Produkte sind praktisch unlöslich in organischen Lösungsmitteln und mäßig löslich in Wasser.

 $(\eta^{\delta}$ -Benzol)chloro(*L*-prolinato)ruthenium(II) (4a): Gelbbraune, orthorhombische Kristalle werden aus einer gesättigten wäßrigen Lösung durch Zusatz von LiCl und Stehenlassen erhalten. 4a ist mäßig in Wasser und Methanol löslich. – ¹H-NMR (D₂O mit LiCl): $\delta = 3.92$ (m, H^{α}), 3.62 und 3.29 (m, 1H^{δ}, Integralverhältnis 10:90), 3.09 (m, 1H^{δ}), 1.4–2.2 (m, H^{β} und H^{γ}).

 $(\eta^{6}\text{-}Benzol)chloro(L-phenylalaninato)ruthenium(II)$ (4b): Gelbbraune Kristalle können wie bei 4a beschrieben erhalten werden. 4b liegt als Monohydrat vor und ist mäßig in Wasser löslich. – ¹H-NMR (D₂O mit LiCl): $\delta = 3.65$ (m, H^{α}), 2.6–3.3 (m, H^{β}), 7.0–7.4 (m, Ph).

 $(\eta^{6}\text{-}Benzol)chloro(4\text{-nitro-L-phenylalaninato})ruthenium(II)$ (4c): Gelbbraune Kristalle werden wie bei 4a beschrieben erhalten; 4c (Hemihydrat) löst sich geringfügig in Wasser. – ¹H-NMR (D₂O mit LiCl): $\delta = 8.08$ (m, Aryl-3,5-H), 7.33 (m, Aryl-2,6-H), 3.74 (m, H²), 2.7 - 3.2 (m, H^β).

 $(\eta^{\circ}$ -Benzol)chloro(3,4-dihydroxy-L-phenylalaninato)ruthenium-(II) (4d) fällt als hellgrünes Pulver (Monohydrat) an, wenn nach der allgemeinen Vorschrift, jedoch unter Inertgas, mit Sauerstofffreiem Wasser gearbeitet wird. An Luft wird ein schwarzgrünes Produkt erhalten. Geringfügig löslich in Wasser. – ¹H-NMR (D₂O mit LiCl): $\delta = 6.4 - 6.9$ (m, Aryl-H), 3.77 (m, H^{α}), 2.6 - 3.2 (m, H^{β}).

 $(\eta^{6}\text{-}Benzol)chloro(D-phenylglycinato)ruthenium(II)$ (4e) liegt als Hemihydrat vor und ist mäßig in Wasser löslich. – ¹H-NMR (D₂O mit LiCl): $\delta = 7.0-7.5$ (m, Aryl-H), 4.48 und 4.07 (s, H^{\alpha}); D₂O: 6.9-7.3 (m, Aryl-H), 5.74 und 5.67 ($\eta^{6}\text{-}C_{6}H_{6}$, M – OD₂), 5.65 und 5.59 ($\eta^{6}\text{-}C_{6}H_{6}$, M – Cl), 4.32 (s, H^{\alpha}, **R_MS_C**, M – OD₂), 4.30 (s, H^{\alpha}, **R_MS_C**, M – Cl), 3.98 (s, H^{\alpha}, **S_MS_C**, M – OD₂), 3.97 (s, H^{\alpha}, **S_MS_C**, M – Cl).

 $(\eta^{6}$ -Benzol)(L-histidinato)ruthenium(II)-chlorid (5): Beim Überschichten des wäßrigen Reaktionsansatzes mit Aceton erhält man

neben einem rotbraunen Harz 5 als gelbe, gut wasserlösliche Tafeln (Hemihydrat). – ¹H-NMR (D₂O): $\delta = 8.42$ (s, br, N=CH-NH), 6.82 (s, br, C=CH-NH), 5.77 (s, C₆H₆), 3.66 (m, H^{α}), 2.84 (m, H^{β}).

Allgemeine Darstellungsvorschrift für die Verbindungen 6a-c: 336 mg (0.50 mmol) [(COD)IrCl]₂¹⁵⁾ werden in 10 ml absol. Dichlormethan unter N₂-Schutz gelöst. Zu dieser Lösung tropft man 1.0 mmol Aminosäureester in 5 ml absol. Dichlormethan. Nach 2 min wird die rote Lösung schwach grün. Man rührt 30 min bei Raumtemp., engt i. Vak. bis auf ca. 5 ml ein und tropft diese Lösung in kaltes, absol. Hexan. Es fällt ein grünlicher, z.T. öliger Niederschlag aus, der nach längerem Rühren vollständig kristallisiert und mit Ether und Hexan gewaschen wird.

Chloro(1,5-cyclooctadien)(glycin-ethylester)iridium(I) (**6a**): Gelbes Pulver. -¹H-NMR (CD₂Cl₂): $\delta = 3.79$, 3.63 (m, COD-Olefin-H), 2.19, 1.52, 1.44 (m, COD-aliphat.-H), 4.22 (q, OCH₂), 1.28 (t, CH₂CH₃), 5.5 (br, H^{α}).

(*L*-Alanin-methylester)chloro(1,5-cyclooctadien)iridium(I) (**6b**): Gelbgrünes Pulver. – ¹H-NMR (CDCl₃): $\delta = 3.4 - 3.9$ (m, COD-Olefin-H), 2.10, 1.51, 1.38 (m, COD-aliphat.-H), 3.72 (s, OCH₃), 1.55 (d, H^β), 5.4 (br, H^N).

Chloro (1,5-cyclooctadien) (L-valin-methylester) iridium (1) (6c): Gelbgrünes Pulver. – ¹H-NMR (CDCl₃): $\delta = 3.3-3.7$ (m, COD-Olefin-H), 2.14, 1.50, 1.35 (m, COD-aliphat.-H), 3.75 (s, OCH₃), 0.94 (d, H^{γ}), 4.9 (br, H^N).

Allgemeine Darstellungsvorschrift für die Verbindungen $7\mathbf{a} - \mathbf{e}$ und 8: Man suspendiert 336 mg (0.50 mmol) [(COD)IrCl]₂ in einem Gemisch aus 5 ml Wasser und 5 ml Aceton und tropft eine Lösung von 1.0 mmol Aminosäure und 1.0 mmol NaOH in 3 ml Wasser zu. Die rote Suspension wird grün. Man rührt 45 min bei Raumtemp., entfernt das Aceton i. Vak. und zentrifugiert den entstandenen grünen Niederschlag. Gründliches Waschen mit Wasser und Trocknen im Ölpumpenvakuum liefert ein analysenreines, grünes Pulver.

(L-Alaninato)(1,5-cyclooctadien)iridium(I) (7 a): ¹H-NMR ([D₆]DMSO): $\delta = 4.94$, 3.66 (COD-Olefin-H), 2.10, 1.48, 1.39 (COD-aliphat.-H), 1.22 (d, H^B), 5.5 (br, H^N).

(1,5-Cyclooctadien)(L-phenylalaninato)iridium(I) (7b): ¹H-NMR ([D₆]DMSO): $\delta = 4.69$, 3.60 (m, COD-Olcfin-H), 2.08, 1.42, 1.32 (m, COD-aliphat.-H), 7.27 (s, Ph), 3.0-3.2 (H^{α} und H^{β}), 5.4 (br, H^N).

(1,5-Cyclooctadien) (L-valinato) iridium(I) (7c): ¹H-NMR ([D₆]-DMSO): $\delta = 4.46$, 3.74 (m, COD-Olefin-H), 2.10, 1.49, 1.40 (m, COD-aliphat.-H), 3.19 (m, H^{α}), 0.93 (H^{γ}), 5.4 (br, H^N).

(1,5-Cyclooctadien)(*L*-leucinato)iridium(*I*) (7d): ¹H-NMR ([D₆]-DMSO): $\delta = 4.69, 3.72$ (m, COD-Olefin-H), 2.08, 1.49, 1.41 (m, COD-aliphat.-H), 1.7 (m, H^{γ}), 0.86 (dd, H^{δ}), 5.5 (br, H^N).

(1,5-Cyclooctadien) (*L*-phenylglycinato)iridium(*I*) (7e): ¹H-NMR ([D₆]DMSO): $\delta = 4.46$, 3.78 (m, COD-Olefin-H), 2.20, 1.54, 1.45 (m, COD-aliphat.-H), 7.29-7.65 (m, Aryl-H), 5.6 (br, H^N).

(1-Aminocyclopropancarboxylato)(1,5-cyclooctadien)iridium(I) (8): ¹H-NMR ([D₆]DMSO): $\delta = 3.73$ (m, COD-Olefin-H), 2.10, 1.52, 1.43 (m, COD-aliphat.-H), 0.96 (br, H^β), 5.4 (br, H^N).

Kristallstrukturbestimmung von $1j^{30}$: Der Komplex wurde aus CH₂Cl₂/Hcxan kristallisiert und ein Bruchstück der Größe $0.3 \cdot 0.2 \cdot 0.3 \text{ mm}^3$ in ein Markröhrchen eingeklemmt. – Kristalldaten: C₁₅H₂₃CIIrNO₂ · 0.5 H₂O, M = 495.0 g/mol, Raumgruppe P2₁2₁2₁, a = 979.1(2), b = 1576.1(2), c = 2149.2(2) pm, V = 3.317(3) nm³, $Z = 8, Q_{\text{ber}} = 1.98$ g · cm⁻³, μ (Mo-K_a) = 81.8 cm⁻¹. – Datensammlung und Auswertung: CAD-4-Diffraktometer, Meßtemperatur

Tab. 3. Analytische Daten von 1-8

Verb.	Summenformel (Molmasse)	Analyse Gef. Ber.	Zers. (°C) Ausb. (%)
1 a	$C_{12}H_{19}CIIrNO_2 \cdot H_2O$	C 31.21 H 4.39 N 3.03 C 31.68 H 4.65 N 3.08	250
b	$C_{12}H_{19}CINO_2Rh \cdot H_2O$	C 39.10 H 5.72 N 3.53	245
c	$C_{15}H_{25}CIIrNO_2$	C 39.41 H 5.79 N 3.83 C 37.25 H 5.34 N 2.93	94 253
d	(479.0) C ₁₅ H ₂₅ ClNO ₂ Rh	C 37.61 H 5.26 N 2.92 C 46.43 H 6.87 N 3.53	81 263
e	(389.7) CusHaeClirNOa	C 46.23 H 6.47 N 3.59 C 43.49 H 4.82 N 2.72	86 255
•	(527.1) C H CINO Ph	C 43.30 H 4.78 N 2.66	83
1	(437.8)	C 52.33 H 5.35 N 3.22 C 52.13 H 5.76 N 3.20	89 81
g	$C_{18}H_{23}CIIrO_2 + 1/2 H_2O$ (522.0)	C 41.19 H 4.77 N 2.49 C 41.41 H 4.63 N 2.68	215 81
h	$\begin{array}{c} C_{21}H_{26}ClIrN_2O_2 \cdot 1/2 \ H_2O \\ (575.1) \end{array}$	C 44.13 H 5.11 N 5.07 C 43.86 H 4.73 N 4.87	220 98
i	$C_{21}H_{26}ClN_2O_2Rh \cdot 1/2 H_2O$ (485.8)	C 52.37 H 5.89 N 5.79 C 51.92 H 5.60 N 5.76	225 92
j	$C_{15}H_{23}CIIrNO_2$	C 37.57 H 4.69 N 2.72 C 37.77 H 4.86 N 2.94	205
k	$C_{15}H_{23}CINO_2Rh$	C 46.06 H 5.91 N 3.36	217
I	$C_{14}H_{21}CIIrNO_2 \cdot H_2O$	C 46.47 H 5.98 N 3.61 C 33.94 H 4.39 N 2.75	79 280
m	(481.0) C14H21ClNO2Rh · 1/2 CH3OH	C 34.95 H 4.81 N 2.91 C 43.18 H 5.87 N 3.44	89 245
n	(391.7)	C 44.69 H 5.94 N 3.59 C 35.24 H 4.60 N 7.74	91 > 300
	(535.0)	C 35.92 H 4.71 N 7.85	73
0	(504.0)	C 33.37 H 4.40 N 2.78	280 80
2 a	$C_{14}H_{20}IrNO_4 + 1/2 H_2O$ (467.5)	C 35.77 H 4.66 N 3.09 C 35.97 H 4.53 N 2.99	258 83
b	$C_{14}H_{20}NO_4Rh \cdot H_2O$ (387.2)	C 43.63 H 5.59 N 3.40 C 43.24 H 5.73 N 3.62	245 77
3a	C ₁₆ H ₂₄ Cl ₂ IrN ₃ O ₂ (553.5)	C 34.82 H 4.37 N 7.58 C 34.72 H 4.37 N 7.59	> 300 87
4a	$C_{11}H_{14}CINO_2Ru$	C 39.51 H 4.17 N 4.23 C 40.19 H 4.29 N 4.26	250 55
b	$C_{15}H_{16}CINO_2Ru \cdot H_2O$	C 44.70 H 4.52 N 3.70	> 300
c	$C_{15}H_{15}C_{10}N_{2}O_{4}Ru \cdot 1/2 H_{2}O$	C 41.08 H 3.58 N 6.76	230
d	(432.8) $C_{15}H_{16}CINO_4Ru \cdot H_2O$	C 41.63 H 3.73 N 6.47 C 41.62 H 4.01 N 3.34	80 > 300
e	(428.8) C ₁₄ H ₁₄ CINO ₂ Ru · 1/2 H ₂ O	C 42.01 H 4.23 N 3.26 C 44.57 H 3.92 N 3.80	89 240
59	(373.8) CroHuClN2O2Bu + 1/2 H2O	C 44.99 H 4.05 N 3.76 C 37 55 H 3.83 N 11.02	66 260
60	(377.8)	C 38.15 H 4.00 N 11.12	42
va	(439.0)	C 32.83 H 4.83 N 3.19	122 59
b	$C_{12}H_{21}CIIrNO_2$ (439.0)	C 32.20 H 5.08 N 3.20 C 32.83 H 4.83 N 3.19	152 75
c	$\begin{array}{c} C_{14}H_{25}CIIrNO_2\\ (467.1) \end{array}$	C 36.40 H 5.37 N 2.96 C 36.00 H 5.41 N 3.00	170 43
7 a	$C_{11}H_{18}IrNO_2$ (388.5)	C 33.86 H 5.10 N 3.43 C 34.00 H 4.58 N 3.61	> 240 78
Ь	$C_{17}H_{22}IrNO_2$ (464.6)	C 43.56 H 5.05 N 2.95 C 43.94 H 4.78 N 3.02	>250
c	$C_{13}H_{22}IrNO_{2}$	C 37.22 H 5.42 N 3.30 C 37.49 H 5.32 N 3.36	>250
d	$C_{14}H_{24}I_{1}NO_{2}$	C 39.23 H 6.15 N 3.17	>250
e	$C_{12}H_{18}I_{17}NO_{2}$	C 39.00 H 5.02 N 3.25 C 36.48 H 4.78 N 3.36	> 250
8	(400.5) C ₁₆ H ₂₀ IrNO ₂	C 35.99 H 4.53 N 3.50 C 42.26 H 4.86 N 3.07	72 >250
	(450.6)	C 42.65 H 4.47 N 3.11	84

Tab. 4. Ausgewählte Bindungslängen (pm) und -winkel (°) von 1j

Ir(1)-Cl(1) 24	1.7(2)	Ir(2) - O(3)	208.3(5)
O(1)-C(5) 12	7.1(9)	O(4)-C(24)	122.6(9)
N(1) - C(4) = 14	8.4(11)	C(20)-C(21)	150.7(14)
C(2)-C(3) 14	5.6(15)	C(22)-C(23)	151.0(16)
Ir(1) - O(1) = 20	8.0(5)	Ir(2) - N(2)	213.1(7)
O(2) - C(5) = 12	3.1(10)	N(2)-C(20)	148.8(10)
C(1) - C(2) = 14	9.8(12)	C(20) - C(24)	151.1(12)
C(3) - C(4) = 14	9.2(13)	Ir(1) - X(1)	175.1(12)
Ir(1) - N(1) = 212	2,9(6)	Ir(2) - Cl(2)	240.6(3)
N(1) - C(1) = 149	9.7(10)	O(3) - C(24)	129.2(10)
C(1) - C(5) = 15	2.9(11)	N(2) - C(23)	149.5(12)
		C(21) - C(22)	150.4(17)
		Tr(2) - X(2)	176 1(12)
		== (2) ==(2)	1,0.1(12)
Cl(1) = Tr(1) = O(1)	86.6(2)	Cl(1) - Ir(1) - N	(1) 84.6(2)
O(1) = Tr(1) = N(1)	77 5(2)	Ir(1) = O(1) = C(1)	5) 117.9(5)
$T_{r}(1) = N(1) = C(1)$	1112(4)	Ir(1) - N(1) - C(1)	4) 118.4(5)
C(1) = N(1) = C(4)	103 9(6)	N(1) = C(1) = C(2)	107.3(7)
N(1) - C(1) - C(4)	100 1(6)	C(2) = C(1) = C(5)	1143(7)
C(1) - C(2) - C(3)	107.0/9	C(2) = C(3) = C(4)	106 6(8)
C(1) - C(2) - C(3)	105 7/7	O(1) = C(5) = O(2)	122 7 (9)
N(1) = C(4) = C(3)	110 4(7)	O(2) = C(5) = C(1)	110 0(7)
	110.4(/)	C(2) = C(3) = C(1)	
CI(2) = Ir(2) = O(3)	82.9(2)	$T_{2}(2) = O(2) = O(2)$	(2) 00.3(2) 04) 117 0/E)
O(3) - Ir(2) - N(2)	/9.5(2)	II(2) = U(3) = U(3)	24) 110 ())
Ir(2) - N(2) - C(20)	111.3(5)	11(2) - N(2) - C(2)	23) 119.0(3)
C(20) = N(2) = C(23)	106.0(7)	N(2) = C(20) = C(20)	(21) 100.4(7)
N(2) - C(20) - C(24)	112.8(7)		(24) 115.9(8)
C(20) - C(21) - C(22)	103.5(9)	C(21) = C(22) = C	(23) 101.3 (9)
N(2) - C(23) - C(22)	105.8(8)	O(3) - C(24) - O(4)	(4) 123.3(8)
O(3) - C(24) - C(20)	117.3(6)	O(4) - C(24) - C(24)	20) 119.3(8)
X(1)-Ir(1)-Cl(1)	125.8(5)	X(1) - Ir(1) - O(1)	1) 128.0(6)
X(1)-Ir(1)-N(1)	136.4(7)	X(2) - Ir(2) - C1	(2) 127.4 (4)
X(2) - Ir(2) - O(3)	129.4(6)	X(1) - Ir(2) - N(2)	2) 131.2(6)

X(1) und X(2) sind die Mittelpunkte der

Cyclopentadienylringe

Tab. 5. Atomkoordinaten (× 10⁴) und isotrope thermische Parameter ($pm^2 \times 10^{-1}$) von 1j

	x	У	z	U
Ir(1)	5865(1)	770(1)	621(1)	44(1)*
Cl(1)	8318(2)	936(1)	602(1)	70(1)*
0(1)	6180(5)	-404(3)	202(2)	53(2)*
0(2)	7096(8)	-1668(4)	302(3)	103(3)*
N(1)	6239(7)	-35(4)	1398(3)	51(2)*
H(a)	6712	356	1664	80
C(1)	7033(9)	-805(5)	1211(3)	56(3)*
C(2)	6632(12)	-1508(6)	1642(4)	95(4) •
C(3)	5544(11)	-1182(6)	2038(5)	93(4)*
C(4)	5049(9)	-384(5)	1741(4)	67(3)*
C(5)	6739(9)	-983(5)	524(4)	64(3)*
C(10)	3749(8)	1035(4)	492(4)	58(3)*
C(11)	4298(8)	1594(5)	958(4)	57(3)*
C(12)	5366(8)	2085 (4)	686(4)	53(3)*
C(13)	5460(8)	1845(4)	37(4)	52(3)*
C(14)	4486(8)	1223(4)	-68(4)	54(3)*
C(15)	2540(8)	443(5)	547(5)	80(4)*
C(16)	3784(9)	1711(5)	1601(4)	77(4)*
C(17)	6196(11)	2759(5)	1007(5)	86(4)*
C(18)	6416(10)	2232(5)	-418(4)	73(3)*
C(19)	4221(10)	789(5)	-687(4)	76(3)*
Ir(2)	8676(1)	1539(1)	3255(1)	47(1)*
Cl(2)	6782(2)	1435(2)	2546(1)	75(1)*
0(3)	8791(6)	236(3)	3105(3)	63(2)*
0(4)	7734(7)	-988(3)	3266(4)	93(3)*
N(2)	7360(7)	1090(4)	3973(3)	55(2)*
Н(b)	7904	1252	4325	80
C(20)	7106(9)	163(5)	3912(4)	64(3)*
C(21)	5579(11)	53(8)	3886(6)	111(5)*
C(22)	5050(10)	784(8)	4266(6)	110(5)*
C(23)	5989(10)	1490(7)	4060(4)	90(4)*
C(24)	7902(9)	-234(5)	3385(4)	66(3)*
C(30)	10812(9)	1764(5)	3134(4)	62(3)*
C(31)	10072(9)	2233(5)	2693(4)	63(3)*
C(32)	9229(9)	2823(5)	3026(4)	68(3)*
C(33)	9410(9)	2694(5)	3674(4)	62(3)*
C(34)	10409(9)	2010(5)	3751(4)	60(3)*
C(35)	11811(9)	1066(6)	3008(4)	77(4)*
C(36)	10222(10)	2200(7)	1996(4)	85(4)*
C(37)	8337(9)	3473(5)	2711(5)	92(4)*
C(38)	8757(11)	3189(5)	4185(5)	97 (4) *
C(39)	10973(9)	1732(5)	4361(4)	73(3)*
0(5)	202(9)	5067(5)	3153(4)	123(4)*

Tab. 6. Ausgewählte Bindungslängen (pm) und -winkel (°) von 1m

Rh(1)-Cl(1) 239.9(2) O(1)-C(11) 127.1(7) N(1)-C(14) 150 1(9)	$\begin{array}{c} Rh(2) - N(2) & 211.9(5) \\ O(3) - Rh(2) & 210.0(4) \\ N(2) - C(4) & 150.7(9) \end{array}$
C(13) - C(14) = 150.1(9)	C(31)-C(32) 154.5(11)
Rh(1)-O(1) 211.0(4)	Rh(2)-X(2) 177.0(9)
O(2) - C(11) = 122.8(7)	Rh(2) - Cl(2) 240.6(2)
$C(11) \leftarrow C(12) = 152.2(8)$ Pb(1) = N(1) = 208.8(5)	O(4) - C(30) = 122 - 9(7)
N(1) - C(12) = 150.0(8)	N(2) - Rh(2) = 211.9(5)
C(12)-C(13) 152.6(9)	C(32)-C(33) 152.2(12)
Rh(1)-X(1) 175.0(8)	Rh(2)-O(3) 210.0(4)
	O(3) - C(30) = 127.4(7)
	N(2) - C(31) = 149.7(8)
	C(30) = C(31) + 149.4(9)
$\begin{array}{c} Cl(1)-Rh(1)-O(1) & 87.1(1) \\ O(1)-Rh(1)-N(1) & 78.3(2) \\ Rh(1)-N(1)-C(12) & 111.7(3) \\ C(12)-N(1)-C(14) & 89.6(4) \\ O(1)-C(11)-C(12) & 116.9(5) \\ N(1)-C(12)-C(11) & 111.2(5) \\ C(11)-C(12)-C(13) & 115.5(5) \\ N(1)-C(14)-C(13) & 91.1(5) \\ Cl(2)-Rh(2)-N(2) & 90.6(2) \\ C(30)-O(3)-Rh(2) & 117.7(4) \\ C(31)-N(2)-Rh(2) & 110.6(4) \\ O(3)-C(30)-O(4) & 123.7(6) \\ O(4)-C(31)-C(32) & 90.1(5) \end{array}$	$\begin{array}{c} Cl(1) - Rh(1) - N(1) & 83.2(1) \\ Rh(1) - O(1) - C(11) & 116.5(4) \\ Rh(1) - N(1) - C(14) & 125.9(4) \\ O(1) - C(11) - O(2) & 124.8(6) \\ O(2) - C(11) - O(2) & 124.8(6) \\ O(2) - C(11) - C(12) & 118.3(5) \\ N(1) - C(12) - C(13) & 90.7(4) \\ C(12) - C(13) - C(14) & 88.2(5) \\ Cl(2) - Rh(2) - O(3) & 88.9(1) \\ O(3) - Rh(2) - N(2) & 79.4(2) \\ C(31) - N(2) - C(33) & 89.6(5) \\ C(33) - N(2) - Rh(2) & 122.8(4) \\ O(3) - C(31) - C(32) & 113.6(5) \\ N(2) - C(31) - C(32) & 113.6(5) \\ N(2) - C(31) - C(32) & 113.6(5) \\ \end{array}$
C(31)-C(32)-C(33) = 87.3(6)	N(2) - C(33) - C(32) = 90.6(6)
X(1)-Rh(1)-Cl(1) 127.0(5)	X(1)-Rh(1)-O(1) 129.3(6)
X(1)-Rh(1)-N(1) 134.4(5)	X(2) - Rh(2) - Cl(2) = 125.0(5)
X(2) - Rh(2) - N(2) 130.9(6)	X(2) - Rh(2) - O(3) 127.2(5)
X(1) und X(2) sind die Mitte	elpunkte der
	Cyclopentadienylringe

Tab. 7. Atomkoordinaten (× 10⁴) und isotrope thermische Parameter (pm² × 10⁻¹) von 1 m

	x	У	z	Ŭe q
Rh(1)	1783(1)	-520(1)	502(1)	38(1)
Cl(1)	4414(2)	-413(1)	679(1)	54(1)
)(1)	1945(5)	-1560(2)	927 (2)	48(1)
D(2)	3202(7)	-2583(2)	851(2)	75(2)
1(1)	2444(6)	-1136(3)	-323(2)	43(2)
C(1)	1237(6)	583(3)	354(3)	45(2)
C(2)	1196(7)	429(3)	1062(3)	48(2)
C(3)	119(7)	-119(3)	1162(3)	49(2)
C(4)	-524(7)	-306(3)	530(4)	56(2)
C(5)	147(7)	150(4)	38(3)	53(2)
C(6)	2213(9)	1131(3)	30(4)	70(3)
C(7)	2100(8)	795(4)	1592(3)	63(2)
C(8)	-279(8)	-457(4)	1842(4)	72(3)
C(9)	-1759(8)	-844(4)	423(5)	82(3)
C(10)	-205(10)	186(5)	-704(3)	75(3)
C(11)	2746(8)	-2013(3)	614(3)	50(2)
C(12)	3122(7)	-1839(3)	-112(3)	44(2)
C(13)	2206(8)	-2 239 (3)	-639(3)	56(2)
C(14)	1427(9)	-15 35 (3)	-797(4)	64(2)
Rh(2)	2252(1)	2435(1)	-1854(1)	40(1)
Cl(2)	4971(2)	2691(1)	1233(1)	64(1)
D(3)	2354(5)	-1329(2)	3285(2)	54(1)
(4)	2976(7)	-232(2)	2960(2)	69(2)
N(2)	3780(6)	-2006(3)	2277(3)	50(2)
C(20)	2432(8)	-3545(3)	3387(5)	70(3)
C(21)	1947(11)	-3422(4)	2747(4)	74(3)
C(22)	767(10)	-2915(5)	2773(5)	84(3)
C(23)	571(10)	-2739(4)	3462(7)	96(4)
C(24)	1580(11)	-3107(5)	3839(4)	77(3)
C(25)	3659(12)	~4054(6)	3584(8)	177(8)
C(26)	2535(21)	-3783(6)	2137(6)	227 (12
C(27)	-122(16)	-2680(8)	2194(8)	239(10
C(28)	-565(13)	-2215(6)	3683(10)	226(11
C(29)	1734(19)	-3088(8)	4589(4)	220(9)
C(30)	3002(8)	-890(3)	2890(3)	49(2)
C(31)	3859(8)	-1201(3)	2316(3)	55(2)
C(32)	5573(9)	-1241(4)	2361(4)	71(3)
C(33)	5437 (9)	-2032(5)	2165(4)	74(3)
0(5)	774(8)	367(4)	-6300(3)	85(2)

*) Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ij} -Tensors.

*) Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ij} -Tensors.

Tab. 8. Ausgewählte Bindungslängen (pm) und -winkel (°) von 3

Ir(1)-Cl(1) 240.	2(5)	Ir(1)-N(1)	210.0(11)
O(1)-C(16) 119.	9(20)	O(2)→C(16)	130.8(19)
N(1)-C(14) 129.	3(20)	N(2)-C(13)	153.2(22)
N(3)-C(15) 138.	5(24)	Ir(1) - N(2)	218.8(14)
C(12)-C(13) 150.	9(22)	N(1) - C(11)	135.4(19)
C(11)-C(12) 149.	5(21)	N(3) - C(14)	133.5(21)
C(13)-C(16) 149.	5(23)	C(11) - C(15)	136.4(20)
		Ir(1) - X(1)	179.2(12)
Cl(1) - Ir(1) - N(1)	86.5(3)	C1(1) - Ir(1) - N(2)	83.8(4)
N(1) - Ir(1) - N(2)	86.7(5)	Ir(1)-N(1)-C(11) 123.4(9)
Ir(1) - N(1) - C(14)	128.0(11)	C(11) - N(1) - C(14)	108.6(12)
Ir(1) - N(2) - C(13)	120.1(10)	C(14) - N(3) - C(15)	106.9(14)
N(1) - C(11) - C(12)	121.1(11)	N(1) - C(11) - C(15)	107.9(14)
C(12) - C(11) - C(15)	130.9(14)	C(11) - C(12) - C(1)	3) 112.5(12)
N(2) - C(13) - C(12)	114.1(13)	N(2) - C(13) - C(16)) 106.1(13)
C(12) - C(13) - C(16)	114.0(13)	N(1) - C(14) - N(3)	110.7(14)
N(3) - C(15) - C(11)	106.0(14)	0(1) - C(16) - O(2)	123.5(15)
O(1) - C(16) - C(13)	123.6(14)	O(2) - C(16) - C(13)	112.7(14)
X(1) - Ir(1) - C1(1)	126.4(12)	X(1) - Ir(1) - N(1)	129.8(14)
X(1) - Ir(1) - N(2)	130.4(14)		
X(1) ist der Mitte	lpunkt des	Cyclopentadieny	lringes

Tab. 9. Atomkoordinaten (× 10^4) und isotrope thermische Parameter (pm² × 10^{-1}) von 3

	x	У	z	U
Ir(1)	9320(1)	9811(1)	370(1)	27(1)*
C1(1)	11987(5)	9574(3)	-262(3)	51(1)*
C1(2)	11040(5)	12065(4)	-1715(3)	63(2)*
0(1)	12915(14)	12012(9)	379(7)	51(4)*
0(2)	12543(15)	12427(9)	1676(7)	54(4)*
N(1)	10604(14)	9879(8)	1497(7)	33(3)*
N(2)	9928(18)	11258(9)	216(9)	42(4)*
N(3)	12094(17)	9542(11)	2564(8)	52(4)*
C(11)	10534(17)	10608(11)	2009(7)	33(4)*
C(12)	9608(18)	11454(10)	1773(9)	36(4)*
C(13)	10227(20)	11861(12)	974(10)	32(5)*
C(14)	11527(20)	9259(11)	1834(10)	46(5)*
C(15)	11478(20)	10415(13)	2687(10)	47(5)*
C(16)	12042(21)	12081(10)	975(10)	38(5)*
C(1)	6907(18)	9868(12)	-218(10)	44(5)*
C(2)	6715(18)	9674(11)	601(10)	44(5)*
C(3)	7515(21)	8852(14)	797(10)	53(6)*
C(4)	8248(23)	8513(13)	36(13)	54(6)*
C(5)	7850(24)	9171(14)	-578(9)	47(6)*
C(6)	6184(27)	10691(14)	~659(17)	87(10)*
C(7)	5592(24)	10188(19)	1219(16)	107(11)*
C(8)	7517(36)	8373 (22)	1621(15)	115(13)*
C(9)	9218 (38)	7651(14)	-152(23)	121(16)*
C(10)	8311 (35)	9146(29)	-1480(14)	166(18)*

*) Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ij} -Tensors.

21°C, ω -Scan, 2 Θ -Bereich 4–50°, Scangeschwindigkeit max. 60 s/ Reflex, 5118 Reflexe gemessen, 4344 Reflexe unabhängig, davon 3953 beobachtet [$I > 2\sigma(I)$], empirische Absorptionskorrektur anhand von 5 Messungen im ψ -Scan (minimale Transmission 0.43, maximale Transmission 1.00). – Strukturanalyse und Verfeinerung: Lösung mit dem SHELXTL-Programmsystem, Patterson- und Fourier-Verfeinerung, 374 Parameter verfeinert, Cyclopentadienyl als regelmäßiges Fünfeck, H-Atome in berechnete Lagen eingesetzt, R = 0.024, $R_w = 0.024$ [$w = 1/(\sigma^2(F) + 0.0003 \cdot F^2)$], maximale Restelektronendichte 1.81 $\cdot 10^{-6} e \cdot pm^{-3}$.

Kristallstrukturbestimmung von 1 m^{30} : Der Komplex wurde aus CH₂Cl₂/Pentan kristallisiert und ein Bruchstück der Größe 0.6 · 0.3 · 0.25 mm³ in ein Markröhrchen eingeklemmt. – Kristalldaten: C₁₄H₂₁ClNO₂Rh · 0.5 CH₃OH, M = 398.7 g/mol, Raumgruppe P2₁₂₁2₁, a = 898.8(2), b = 1854.3(2), c = 1993.0(3) pm, V = 3.322(3) nm³, Z = 8, $\varrho_{\text{ber}} = 1.59$ g · cm⁻³, μ (Mo-K_a) = 1.17 mm⁻¹. – Datensammlung und Auswertung: CAD-4-Diffraktometer, Meßtemperatur 21 °C, ω -Scan, 2 Θ -Bereich 4–48°, maximale Scangeschwindigkeit 60 s/Reflex, 2981 Reflexe gemessen, zu 2904 unabhängigen gemittelt, davon 2794 beobachtet $[I > 2\sigma(I)]$, empirische Absorptionskorrektur anhand von 5 Messungen im ψ -Scan (minimale Transmission 0.85, maximale Transmission 1.00). – *Strukturanalyse und Verfeinerung*: Lösung mit dem SHELXTL-Programmsystem, Patterson- und Fourier-Verfeinerung, 363 Parameter verfeinert, Cyclopentadienylring als regelmäßiges Fünfeck, H-Atome in berechnete Lagen eingesetzt, alle Nichtwasserstoffatome anisotrop, R = 0.025, $R_w = 0.027$ [$w = 1/(\sigma^2(F) + 0.0003 \cdot F^2)$], maximale Restelektronendichte 0.33 $\cdot 10^{-6} e \cdot pm^{-3}$.

Kristallstrukturbestimmung von 3³⁰: Die Verbindung wurde aus MeOH/Et₂O kristallisiert und ein Bruchstück der Größe $0.5 \cdot 0.2 \cdot 0.3 \text{ mm}^3$ in ein Markröhrchen eingeklemmt. – Kristalldaten: C₁₆H₂₃Cl₂IrN₃O₂, M = 552.5 g/mol, Raumgruppe $P2_12_12_1$, a = 804.4(2), b = 1464.1(3), c = 1620.5(4) pm, V = 1.908(2) nm³, Z = 4, $Q_{ber} = 1.93$ g \cdot cm⁻³, μ (Mo- K_{α}) = 72.6 cm⁻¹. – Datensammlung und Auswertung: CAD-4-Diffraktometer, Meßtemperatur 21 °C, ω -Scan, 2 Θ -Bereich 4 – 50°, Scangeschwindigkeit max. 80 s/ Reflex, 1955 Reflexe gemessen, zu 1927 unabhängigen gemittelt, davon 1793 beobachtet [$I > 2\sigma(I)$], empirische Absorptionskorrektur anhand von 5 Messungen im ψ -Scan (minimale Transmission 0.60, maximale Transmission 1.00). – Strukturanalyse und Verfeinerung: Lösung mit dem SHELXTL-Programmsystem, Patterson- und Fourier-Verfeinerung, 221 Parameter verfeinert, Cyclopentadienyl als regelmäßiges Fünfeck, H-Atome in berechnete

Tab. 10. Ausgewählte Bindungslängen (pm) und -winkel (°) von 4a

and the second					
Ru(1) - Cl(1)	241.1(1)	Ru(1)-0(1)	207.	2(2)	
0(1)-0(5)	128.3(3)	0(2)-0(5)	123.	2(3)	
N(1) - C(4)	149.6(3)	C(1) - C(2)	152.	7(4)	
C(2)-C(3)	151.4(4)	C(3)-C(4)	151.	0(4)	
	Ru(1) - N(1)	212.8(2)			
	N(1) - C(1)	149.5(3)			
	C(1)-C(5)	151.8(4)			
	Ru(1) - X(1)	165.9(5)			
Cl(1)-Ru(1)-O(1) 85.2(1)	Cl(1)-Ru(1)-	N(1)	82.0	(1)
O(1) - Ru(1) - N(1)	79.4(1)	Ru(1) - O(1) - C	(5)	117.4	(2)
Ru(1) - N(1) - C(1)	110.9(1)	Ru(1)-N(1)-C	(4)	119.7	(2)
C(1) - N(1) - C(4)	106.5(2)	N(1) - C(1) - C(1)	2)	105.9	(2)
N(1) - C(1) - C(5)	112.3(2)	C(2)-C(1)-C(5)	111.7	(2)
C(1) - C(2) - C(3)	103.6(2)	C(2) - C(3) - C(3)	4)	101.4	(2)
N(1) - C(4) - C(3)	105.4(2)	0(1) - C(5) - 0(2)	123.7	(2)
O(1) - C(5) - C(1)	117.0(2)	0(2) - C(5) - C(6)	1)	119.20	(2)
X(1) - Ru(1) - Cl(1)	128.7(3)	X(1) - Ru(1) = 0	(1)	127.6	(2)
X(1) = Ru(1) = N(1)	135 2(2)		/		
M(1) M(1) M(1)	133.0(0)				
X(1) ist der Mi	ttelpunkt de	es Benzolring	es		

Tab. 11. Atomkoordinaten (× 10⁴) und isotrope thermische Parameter (pm² × 10⁻¹) von 4a

	x	У	z	Ue q
Ru(1)	-417(1)	704(1)	9092(1)	21(1)
C1(1)	2688(1)	1439(1)	8634(1)	33(1)
0(1)	-1049(3)	3003(2)	9051(1)	28(1)
0(2)	-1105(3)	5015(2)	8317(1)	37(1)
N(1)	-1165(3)	943(2)	7965(1)	20(1)
C(1)	-1307(4)	2582(3)	7757(1)	22(1)
C(2)	-3245(4)	2763(3)	7378(2)	34(1)
C(3)	-3634(5)	1201(3)	7064(2)	37(1)
C(4)	-2934(4)	190(3)	7678(2)	29(1)
C(5)	-1118(4)	3630(3)	8415(1)	24(1)
C(6)	-451(3)	545(2)	10287(1)	49(1)
C(7)	943	-441	10014	51(1)
C(8)	461	-1510	9479	54(1)
C (9)	-1414	-1594	9218	57 (1)
C(10)	-2807	-608	9491	53(1)
C(11)	-2326	461	10025	47(1)

*) Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ij} -Tensors.

Lagen eingesetzt, R = 0.045, $R_w = 0.044 \int w = 1/(\sigma^2(F) + 0.0005 \cdot C)$ F^{2}], maximale Restelektronendichte 1.81 \cdot 10⁻⁶ $e \cdot \text{pm}^{-3}$.

Kristallstrukturbestimmung von 4a³⁰): Der Komplex wurde aus H₂O/LiCl kristallisiert und ein Bruchstück der Größe 0.2 · 0.2 · 0.2 mm³ in ein Markröhrchen eingeklemmt. – Kristalldaten: $C_{11}H_{14}CINO_2Ru, M = 328.8 \text{ g/mol, Raumgruppe } P_{21}2_{1}2_{1}, a =$ $698.2(2), b = 880.2(2), c = 1820.6(4) \text{ pm}, V = 1.119(3) \text{ nm}^3, Z = 4,$ $\varrho_{ber} = 1.95 \text{ g} \cdot \text{cm}^{-3}, \ \mu(\text{Mo-}K_{\alpha}) = 1.60 \text{ mm}^{-1}. - Datensammlung$ und Auswertung: CAD-4-Diffraktometer, Meßtemperatur 21 °C, ω-Scan, 2 Θ -Bereich 4-50°, max. Scangeschwindigkeit 45 s/Reflex, 2182 Reflexe gemessen, davon 1952 beobachtet $[I > 2\sigma(I)]$, empirische Absorptionskorrektur anhand von 5 Messungen im ψ -Scan (minimale/maximale Transmission 0.93/1.00). - Strukturanalyse und Verfeinerung: Lösung mit dem SHELXTL-Programmsystem, Patterson- und Fourier-Verfeinerung, 142 Parameter verfeinert, Benzol als regelmäßiges Sechseck, H-Atome in berechnete Lagen eingesetzt, alle Nichtwasserstoffatome anisotrop, R = 0.015, $R_w =$ 0.017 [$w = 1/(\sigma^2(F) + 0.0006 \cdot F^2)$], maximale Restelektronendichte $0.37 \cdot 10^{-6} e \cdot pm^{-3}$.

CAS-Registry-Nummern

1a: 124154-91-2 / 1b: 124154-92-3 / 1c ($S_{\rm Ir}S_{\rm C}$): 124154-93-4 / 1c ($R_{\rm tr}S_{\rm C}$): 124223-23-0 / 1d ($S_{\rm Rh}S_{\rm C}$): 124154-94-5 / 1d ($R_{\rm Rh}S_{\rm C}$): 124223- $\begin{array}{l} (R_{tr}S_C): 124223-25-2 / 14 (S_{tr}S_C): 124154-96-7 / 16 (R_{tr}S_C): 124223-24-1 / 16 (S_{tr}S_C): 124154-95-6 / 1e (R_{tr}S_C): 124223-25-2 / 1f (S_{tr}S_C): 124154-97-8 / 1g (R_{tr}R_C): 124223-26-3 / 1h (S_{tr}S_C): 124154-98-9 / 1h (R_{tr}S_C): 124223-27-4 / 1i (S_{tr}S_C): 124154-99-0 / 1i (R_{tr}S_C): 124223-28-5 / 1j (S_{tr}S_C): 12423-28-5 / 1j (S_{tr}S_C): 124223-28-5 / 1j (S_{tr}S_C): 124223-28-5 / 1j (S_{tr}S_C): 12423-28-5 / 1j (S_{tr}S_C): 12423-28-5 / 1j (S_{tr}S_C): 124223-28-5 / 1j (S_{tr}S_C): 12423-28-5 / 1j (S_{tr}S_C)$ Ig (R_{Ir}R_C): 124223-26-3 / Ih (S_{Ir}S_C): 124154-98-9 / Ih (R_{Ir}S_C): 124223-27-4 / Ii (S_{Rb}S_C): 124154-99-0 / Ii (R_{Rb}S_C): 124223-28-5 / Ij (S_{Ir}S_CS_N): 124155-00-6 / Ij (S_{Ir}S_CS_N) · 0.5 H₂O: 124223-28-5 / Ik (S_{Rb}S_CS_N): 124223-29-6 / Ij (R_{Ir}S_CS_N) · 0.5 H₂O: 124262-85-7 / Ik (S_{Rb}S_CS_N): 124155-01-7 / Ik (R_{Rb}S_CS_N): 124223-30-9 / II (S_{Ir}S_CS_N): 124155-02-8 / II (R_{Ir}S_CS_N) / 124223-31-0 / Im (S_{Rb}S_CS_N): 124155-03-9 / Im (S_{Rb}S_CS_N): 0.5 CH₃OH: 124262-86-8 / In (S_{Rb}S_CS_N): 124223-32-1 / Im (R_{Rb}S_CS_N)· 0.5 CH₃OH: 124262-86-8 / In (S_{Rb}S_CS_N): 124223-38-7 / Ia (R_{Ir}S_CS_N): 0.5 CH₃OH: 124262-86-8 / In (S_{Rb}S_CS_N): 124223-38-7 / In (R_{Ir}S_CS_N): 124155-04-0 / Io: 124155-05-1 / 2a: 124155-06-2 / 2b: 124155-07-3 / 3 (S_{Ir}S_C): 124223-34-3 / 4c (S_{Ru}S_C): 124223-39-8 / 4a (S_{Ru}S_CS_N): 124155-09-5 / 4a (R_{Ru}S_CS_N): 124223-33-2 / 4b (S_{Ru}S_CS_N): 124125-10-8 / 4b (R_{Ru}S_C): 124125-13-1 / 4e (R_{Ru}S_C): 124223-36-5 / 4e (S_{Ru}R_C): 124155-13-1 / 4e (R_{Ru}R_C): 124223-37-6 / 5: 124155-14-2 / 6a: 124155-15-3 / 6b: 124155-12-0 / 4d (R_{Ru}S_C): 124155-21-1 / 7e: 124155-13-7 / 7c: 124155-20-0 / 7d: 124155-21-1 / 7e: 124155-13-7 / (Cp*IrCl₂): 12354-85-7 / (Cp*IrCl₂): 12354-84-6 / [n⁶-(C₄H₄)RuCl₂]: 37366-09-9 / [(CODJIrCI]: 12112-67-3 / L-Prolin: 147-85-3 / L-Histidin: 71-00-1 / L-4-Nitrophenylalanin: 949-99-5 / Glycin: 56-40-6 / L-Valin: 72-18-4 / L-Phenylalanin: 56-41-7 / L-Valin-methylester: 4070-48-8 / L-Alanin-methylester: 10065-72-2 / Glycin-ethylester: 4070-48-8 / L-Alanin-methylester: 10065-72-2 / Glycin-ethylester: 459-73-4 / L-Asparginsäure: 56-84-8 / L-Azetidin-2-carbonsäure: 2133-34-8 / I-Aminocyclopropancarbonsäure: 20059-21-8 2-carbonsäure: 2133-34-8 / 1-Aminocyclopropancarbonsäure: 22059-21-8

- ¹⁾ LII. Mitteilung: Th. Pill, K. Polborn, W. Beck, Chem. Ber. 123 (1990) 11.
- Röntgenstrukturanalysen.
- ³⁾ Übersicht über Carbonylkomplexe von α-Aminosäuren: A. A. Ioganson, Russ. Chem. Řev. 54 (1985) 277.
- 4) 4a) H. Brunner, Angew. Chem. 81 (1969) 395; Angew. Chem. Int. Ed. Engl. 8 (1969) 382; Angew. Chem. 83 (1971) 274; Angew. Chem. Int. Ed. 10 (1971) 249; Ann. N.Y. Acad. Sci. 29 (1974) 213; Top. Curr. Chem. 56 (1975) 67; Acc. Chem. Res. 12 (1979) 250; Chem. Unserer Zeit 11 (1977) 157. – ^{4b)} H. Brunner, Adv. Organomet. Chem. 18 (1980) 152. – ^{4c)} H. Brunner, Angew. Chem. 95 (1983) 921; Angew. Chem. Int. Ed. 22 (1983) 897. – ^{4d)} G. Consiglio, F. Morandini, Chem. Rev. 87 (1987) 761.
- ⁵⁾ W. Hieber, H. Führling, Z. Anorg. Allg. Chem. 381 (1971) 235.
 ⁶⁾ Y. Nakagawara, K. Kikukawa, M. Takagi, T. Matsuda, Chem. Lett. 1972, 611; Bull. Chem. Soc. Jpn. 50 (1977) 2748; E. Benedetti, G. Maglio, R. Palumbo, C. Pedone, J. Organomet. Chem. 60 (1972) 199 (1973) 189.

- ⁷⁾ M. L. H. Green, L. C. Mitchard, W. E. Silverthorn, J. Chem. Soc., Dalton Trans. 1973, 1403.
- ⁸⁾ C. Potvin, L. Davignon, G. Pannetier, Bull. Soc. Chim. Fr. 1975,
- 507. ^{9) 9a)} D. Dowerah, M. M. Singh, *Transition Met. Chem.* 1 (1976) 294; J. Chem. Research (S) **1979**, 38; J. Chem. Research (M) 1979, 255; J. Indian Chem. Soc. 57 (1980) 368; Z. Nagy-Magos, P. Kvintovics, L. Marko, Transition Met. Chem. 5 (1980) 186. – ^{9b)} L. Marko, Z. Nagy-Magos, P. Kvintovics, Abstracts IX. Int. Conference on Organomet. Chem., Dijon 1979. - ^{9c)} H. Brunner, B. Reiter, G. Riepl, Chem. Ber. 117 (1984) 1330. - ^{9d)} P. Kvintovics, B. Heil, Abstracts VIIIth FECHEM Conference on Or-ganometallic Chemistry, Veszprem-Balatonfüred 1989. – ⁹⁶ P. Kvintovics, B. R. James, B. Heil, J. Chem. Soc., Chem. Commun.
- 1986, 1810. ¹⁰⁾ ^{10a)} D. F. Dersnah, M. C. Baird, J. Organomet. Chem. 127 (1977) C55. ^{10b)} Anmerkung bei der Korrektur (Januar 1990): Über Reaktionen mit Penicillamin, Histidin und Histidin-methylester wurde kürzlich berichtet: W. S. Sheldrick, S. Heeb, J. Organomet. Chem. 377 (1989) 357.
- ¹¹⁾ B. Olgemöller, L. Olgemöller, W. Beck, Chem. Ber. 114 (1981) 2971; W. Beck, M. Girnth, ibid. 109 (1976) 965; L. Olgemöller, W. Beck, ibid. 117 (1984) 1241; E. Ambach, W. Beck, ibid. 118
- (1985) 2722; I. Zahn, K. Polborn, W. Beck, *ibid.* 122 (1989) 253.
 ¹²⁾ ^{12a)} W. Beck, W. Petri, *J. Organomet. Chem.* 127 (1977) C40; W. Beck, W. Petri, H. J. Meder, *ibid.* 191 (1980) 73. ^{12b)} W. Petri, H.-J. Meder, M. Girnth-Weller, K. Bartel, V. Bejenke, G. Hutt-ner, W. Beck, *Chem. Ber.* 115 (1982) 846. – ^{12c)} H.-J. Meder, W.
- Beck, Z. Naturforsch., Teil B, 41 (1986) 1247.
 ¹³⁾ ^{13a)} J. W. Kang, K. Moseley, P. M. Maitlis, J. Am. Chem. Soc. 91 (1969) 5970; B. L. Booth, R. N. Haszeldine, M. Hill, J. Chem. Soc. A 1969, 1299. ^{13b)} P. M. Maitlis, Acc. Chem. Res. 11 (1978) 301; Chem. Soc. Rev. 10 (1981) 1. ^{13c)} W. P. Fehlhammer, W. W. Katalan Market and Herrmann, K. Ösele in Handbuch der Präparativen Anorganischen Chemie (G. Brauer, Ed.), Bd. 3, S. 1961, 1963, F. Enke, Stuttgart 1981
- ¹⁴⁾ G. Winkhaus, H. Singer, M. Kricke, Z. Naturforsch., Teil B, 21 (1966) 1109; G. Winkhaus, H. Singer, J. Organomet. Chem. 7 (1967) 487; M. A. Bennett, A. K. Smith, J. Chem. Soc., Dalton Trans. 1974, 233
- ¹⁵⁾ G. Winkhaus, H. Singer, Chem. Ber. 99 (1966) 3610; J. L. Herde, J. L. Lambert, L. V. Senoff, Inorg. Synth. 15 (1974) 18.
- ¹⁶⁾ M. A. Bennett, M. I. Bruce, T. W. Matheson, R. P. Hughes, G. J. Leigh, R. L. Richards in Comprehensive Organometallic Che*mistry* (G. Wilkinson, F. G. A. Stone, E. W. Abel, Eds.), Bd. 4, S. 796; Bd. 5, S. 368, 599, 604, Pergamon Press, Oxford 1982; J. Moreto, K. Maruya, P. M. Bailey, P. M. Maitlis, J. Chem. Soc., Dalton Trans. 1982, 1341, und frühere Mitteilungen von P. M. Maitlis und Mitarbeitern; H. Werner, Angew. Chem. 95 (1983) 932; Angew. Chem. Int. Ed. 22 (1983) 927; H. Werner, R. Werner, Chem. Ber. 115 (1982) 3766.
- ¹⁷⁾ H. Brunner, R. Lukas, Chem. Ber. 112 (1979) 2528; H. Brunner, D. K. Rastogi, Inorg. Chem. 19 (1980) 891, und dort zitierte Literatur.
- ¹⁸⁾ W. J. Geary, Coord. Chem. Rev. 7 (1971) 81.
- ¹⁹⁾ ^{19a)} Ch.-Y. Lin, B. E. Douglas, J. Coord. Chem. 2 (1972) 117; C. R. White, M. D. Joesten, ibid. 6 (1976) 53. Über Versuche zur Darstellung von Pd(II)-Komplexen siehe: K. Freund, H. Frye, J. Inorg. Nucl. Chem. Lett. 7 (1971) 107. Durch Umsetzung von $K[PtCl_3(C_2H_4)]$ mit L-Azetidin-2-carboxylat erhielten wir den Komplex (C₂H₄)Pt(Cl)(Azetidin-2-carboxylat). - ^{19b}S. T. Chow, C. A. McAuliffe in *Progr. Inorg. Chem.* **19** (1975) 51, und dort zitierte Literatur. ^{20a)} G. Wallin, Öfvers. Akad. Stockholm **49** (1892) 21; L. M. Volsh-
- 20) tein, Sov. Coord. Chem. 1 (1975) 483; W. Beck, H. Bissinger, T. Castrillo de Castro, L. Olgemöller, B. Purucker, *Chem. Ber.* 118 (1985) 3135, und dort zitierte Literatur. $-\frac{200}{100}$ H. Wautier, V. Daffe, M.-N. Smets, J. Fastrez, J. Chem. Soc., Dalton Trans. 1981, 2479
- ²¹⁾ H. Wanjek, U. Nagel, W. Beck, Chem. Ber. 118 (1985) 3258.
- 22) K. Aoki, H. Yamazaki, J. Chem. Soc., Chem. Commun. 1987, 1241; N. Hu, K. Aoki, H. Yamazaki, J. Chem. Soc., Dalton Trans., im Druck.
- ²³⁾ K. Isobe, P. M. Bailey, P. M. Maitlis, J. Chem. Soc. Dalton Trans. 1981, 2003.
- ²⁴⁾ P. Stoppioni, M. Di Vaira, P. M. Maitlis, J. Chem. Soc., Dalton Trans. **1982**, 1147.
- ²⁵⁾ M.-Th. Youinou, R. Ziessel, J. Organomet. Chem. 363 (1989) 197.

- ²⁶⁾ R. J. Restivo, G. Ferguson, D. J. O'Sullivan, F. J. Lalor, Inorg. Chem. 12 (1975) 3046.
 ²⁷⁾ M. A. Bennett, G. B. Robertson, A. K. Smith, J. Organomet. Chem. 43 (1972) C41.
 ²⁸⁾ A. Mat. Mathianan, H. K. Walsh, Acta Crystallogr. 5 (1952) 599;
- Chem. 43 (1972) C41.
 ²⁸⁾ A. McL. Mathieson, H. K. Welsh, Acta Crystallogr. 5 (1952) 599; H. C. Freeman, I. E. Maxwell, Inorg. Chem. 9 (1970) 649; M. Ito, F. Marumo, Y. Saito, Acta Crystallogr., Sect. B, 27 (1971) 1062.
 ²⁹⁾ H. M. Berman, E. L. McGandy, J. W. Burgner II, R. L. VanEtten, J. Am. Chem. Soc. 91 (1969) 6177.
- ³⁰⁾ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wis-senschaftlich-technische Information mbH, D-7514 Eggenstein-und der Michael auf der Micha Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-54139, der Autorennamen und des Zeitschriftenzitats angefordert werden.

[319/89]